Solvothermal Synthesis of Complex Fluorides KCoF₃ and KNiF₃

Ruinian Hua,[†] Zhihong Jia, Demin Xie,[†] and Chunshan Shi*

Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China

[†]Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

(Received December 14, 2001; CL-011262)

Complex fluorides $KCoF_3$ and $KNiF_3$ with perovskite structures were solvothermally synthesized at 120–180 °C and characterized by means of X-ray powder diffraction, scanning electron microscopy, thermogravimetric analysis and infrared spectroscopy.

Perovskite-type fluorides have very interesting physical properties such as ferromagnetic,¹ piezoelectric characteristics,² nonmagnetic insulator behaviour,³ thermal conductivity⁴ and well photoluminescence host crystals materials,^{5,6} and several ways have been employed to grow single crystals suitable for measurements of their properties. AMF_3 (A = K, Na, Cs, Rb; M = Mg, Co, Ni, Zn) is one sort of the important complex fluorides because of possible applications as a laser host.⁷ Conventional synthesis routes to complex fluorides include solid state reactions⁸ at high temperature and high-temperature (>400 °C), high-pressure (>100 MPa) hydrothermal technique.⁹ For instance, Skrzypek et al.¹⁰ and Garrard et al.¹¹ grew KCoF₃ crystals by the Bridgman method and a flux method, respectively. Knox¹² and Hirakawa et al.¹³ grew KCoF₃ and KNiF₃ crystals from HF aqueous solutions by evaporating the solvent. Somiya et al.¹⁴ made KCoF₃ and KNiF₃ by high-temperature (>400 °C), high-pressure (>98 MPa) hydrothermal technique. The solid state synthetic apparatus however requires a complicated set-up because of the erosion of fluorides and high-temperature, highpressure hydrothermal technique requires special devices. The oxygen content in the complex fluorides synthesized by solidstate reaction is higher than that of the corresponding complex fluorides synthesized by hydrothermal technique¹⁵ and thus has limited the studies of fluorides in the materials chemistry. In order to reduce the oxygen content in the complex fluorides we developed new methods for the preparation of complex fluorides. In this paper, we at the first time report a convenient method for the synthesis of KCoF3 and KNiF3 with perovskite structures under a solvothermal process.

Solvothermal synthesis of KCoF₃ and KNiF₃ was carried out in a Teflon-lined stainless steel autoclave under autogenous pressure. The starting reactants were KF(A.R.), NiF₂•4H₂O(C.P.) and CoF₂(A.R.). The mole ratios of initial mixtures for the synthesis of KCoF₃ and KNiF₃ were 1.0 KF : 1.0 CoF₂ and 1.0 KF : 1.0 NiF₂, respectively. The typical synthetic procedure for crystalline KCoF₃ and KNiF₃ was as follows: 0.291 g KF and 0.485 g CoF₂, 0.291 g KF and 0.844 g NiF₂•4H₂O were mixed respectively, and added into a Teflon-lined autoclave of 20 mL capacity. Then the autoclave was filled with absolute ethanol (for the synthesis of KCoF₃) or ethylene glycol (for the synthesis of KNiF₃) up to 80% of the total volume. The autoclave was sealed into a stainless steel tank and heated in an oven at 180 °C for 7days. After being cooled to room temperature naturally, the final powder products were filtered off, washed with absolute ethanol and distilled water, and then dried in air at ambient temperature.

The crystalline products were identified by X-ray powder diffraction (XRD) on a Japan Rigaku D/max-IIB diffractometer with Cu K α_1 radiation ($\lambda = 1.5405$ Å). The XRD data for index and cell-parameter calculations were collected by a scanning mode with a step of 0.02 ° in the 2θ range from 10 ° to 100 ° and a scanning rate of $4.0 \circ \text{min}^{-1}$ with silicon used as an internal standard. Observation of crystallites by SEM was performed on a JXA-840 scanning electron microscopy. Thermogravimetric analysis (TGA) was conducted using a DT-30 Thermogravimetric system. IR spectra were obtained with a Magna 560 spectrometer in the range 400–4000 cm⁻¹. The sample was pressed KBr pellets for the spectral measurements.

Table 1 lists the preparation conditions for $KCoF_3$ and $KNiF_3$. In the syntheses, the ratio of initial composition was found to be sensitive to the formation, crystallization, and purity of the products. As shown in Table 1, when the mole ratios K/Co (or Ni) of mixtures were 1 or 2, the pure and well-crystallized products were prepared. However, when the mole ratio K/Co (Ni) of mixtures was 0.5, unreacted CoF_2 (NiF₂) remained as an impurity. The possible reaction mechanism can be formulated

Table 1. Solvothermal synthesis conditions for KCoF_3 and KNiF_3

Starting		a : b			Reaction	Phases in
materials		mole	Solv. ^a	Time	Temp./	product
а	b	ratio		/d	°Ĉ	-
KF	CoF_2	1:1	А	7	180	KCoF ₃
KF	CoF_2	2:1	А	7	180	KCoF ₃
KF	CoF_2	3:1	А	7	180	KCoF3+KF
KF	CoF_2	1:2	А	7	180	KCoF ₃ +CoF ₂
KF	CoF_2	1:1	А	1	180	KCoF ₃
KF	CoF_2	1:1	А	2	180	KCoF ₃
KF	CoF_2	1:1	А	1	150	KCoF ₃
KF	CoF_2	1:1	А	2	150	KCoF ₃
KF	CoF_2	1:1	А	1	120	KCoF ₃
KF	CoF_2	1:1	А	2	120	KCoF ₃
KF	NiF_2	1:1	В	7	180	KNiF ₃
KF	NiF_2	2:1	В	7	180	KNiF ₃
KF	NiF_2	3:1	В	7	180	KNiF ₃ +KF
KF	NiF_2	1:2	В	7	180	KNiF3+NiF2
KF	NiF_2	1:1	В	1	180	KNiF ₃
KF	NiF_2	1:1	В	2	180	KNiF ₃
KF	NiF_2	1:1	В	1	150	KNiF ₃
KF	NiF_2	1:1	В	2	150	KNiF ₃
KF	NiF_2	1:1	В	1	120	KNiF ₃
KF	NiF_2	1:1	В	2	120	KNiF ₃

^aSolvent A was ethanol and B was ethylene gloycol.

as follows:

 $KF \stackrel{H_2O}{=} K^+ + F^-$ (a trace of water is coming from the solvents)

 $MF_2 + nR \rightleftharpoons MF_2 \cdot nR$

 $MF_2 \cdot nR + K^+ + F^- = KMF_3 + nR$

(M = Co or Ni, R = ethanol, ethylene glycol, n = 6 and 2,)

The XRD patterns of the KCoF₃ and KNiF₃ are shown in Figure 1 and can be indexed in cubic systems with space group P_{m3m} . The unit-cell parameter for KCoF₃ is a = 4.0703 Å and for KNiF₃ is a = 4.0152 Å. The value for KCoF₃ is similar to that of the corresponding KCoF₃ synthesized by solid-state reaction (a = 4.0708 Å) [JCPDS Card 18-1006]. The value for KNiF₃ is slightly bigger than that of the corresponding KNiF₃ synthesized by solid-state reaction (a = 4.0127 Å) [JCPDS Card 21-1002]. The powder XRD patterns show that the products are pure.

Figure 1. XRD patterns of KCoF₃ (a) and KNiF₃ (b).

The SEM observation of the product shows that the crystallites have regular morphology and this implies that the products are a pure and single phase. The two complex fluorides KCoF₃ and KNiF₃ have the same cubic shape, and the average grain sizes are ca. 8 μ m and 9 μ m, respectively. The analytical data for KCoF₃ and KNiF₃ crystals are in good agreement with the formulas whose mole ratio of K : Co (or Ni) is 1 : 1.

The thermal stability of the as-prepared KCoF₃ and KNiF₃ was studied by TG-DTA analysis in air. No phase transformations was observed up to 700 °C in either system and no mass loss occurred for KCoF₃ between 50 and 700 °C. This indicates that KCoF₃ is not hydrated and is stable in air. The presence of ca. 2.6% surface water was evident for KNiF₃ between 50–110 °C, as

confirmed by IR at 3437.4 cm^{-1} and 1642.9 cm^{-1} .

In summary, a new method for the synthesis of KCoF₃ and KNiF₃ by solvothermal crystallization at 120–180 °C is presented. Both KCoF₃ and KNiF₃ crystallize in cubic systems with the perovskite structure. All the products have uniform grain shapes and sizes. The mole ratios are crucial to the synthesis. Compared with traditional high temperature solid-state methods, flux method, HF aqueous solutions method, high-temperature, high-pressure hydrothermal synthesis method and mild hydrothermal synthesis method, the solvothermal synthesis method to complex fluorides appears advantageous in terms of lower synthesis temperature, simple operation, high purity and well-crystallization.

This work was supported by the State Key Project of Foundation Research (G1998061306) and National Nature Science Foundation of China (50072031).

References

- A. H. Cooke, D. A. Jones, J. F. A. Silva, and M. R. Weils, J. Phys. C: Solid State Phys., 8, 4083 (1975).
- 2 M. Eibschutz, H. J. Guggenheim, S. H. Wemple, I. Camlibel, and M. Didomenico, *Phys. Lett.*, **29A**, 409 (1969).
- 3 R. A. Heaton and C. Lin, Phys. Rev. B, 25, 3538 (1982).
- 4 Y. Suemune and H. Ikawa, J. Phys. Soc. Jpn., **19**, 1686 (1964).
- 5 A. Meijerink, J. Lumin., 55, 125 (1993).
- 6 Y. Tan and C. Shi, J. Solid State Chem., 150, 178 (2000).
- 7 J. M. Dance and N. J. Kerkouri, *Mat. Res. Bull.*, **14**, 869 (1979).
- 8 G. D. Dzik, I. Sokolska, S. Golab, and M. Baluka, J. Alloys Compd., 300–301, 254 (2000).
- 9 L. N. Demianets, *Prog. Crystal Growth and Charact.*, **21**, 299 (1990).
- 10 D. Skrzypek, P. Jakubowski, A. Ratuszna, and A. Chelkowski, J. Cryst. Growth, 48, 475 (1980).
- 11 B. J. Garrard, B. M. Wanklyn, and S. H. Smith, J. Cryst. Growth, 22, 169 (1974).
- 12 K. Knox, Acta Crystallogr., 14, 583 (1961).
- 13 K. Hirakawa, K. Hirakawa, and T. Hashimoto, J. Phys. Soc. Jpn., 15, 2063 (1960).
- 14 S. Somiya, S. Hirano, M. Yoshimura, and K. Yanagisawa, J. Mater. Sci., 16, 813 (1981).
- 15 H. Li, Z. Jia, and C. Shi, Chem. Lett., 2000, 1106.